• 姓名: 陈艺超
  • 性别: 男
  • 职称: 副研究员
  • 职务: 
  • 学历: 博士研究生
  • 电话: 
  • 传真: 
  • 电子邮件: chenyc@ms.xjb.ac.cn
  • 所属部门: 
  • 通讯地址: 新疆乌鲁木齐市北京南路818号

    简  历:

  • 教育经历:

    2012年6月,在北京大学获得地球化学学士学位;

    2017年6月,在中国科学院大学,中国科学院新疆生态与地理研究所获得地球探测与信息技术工学博士学位。

    工作经历:

    2017年7月至2023年7月,在中国科学院大学做博士后研究工作;

    2019年10月至2020年10月,在澳大利亚昆士兰大学做访问博士后;

    2024年1月至今,在中国科学院新疆生态与地理研究所任副研究员,从事大地构造学方向的研究工作。

    社会任职:

    研究方向:

  • 微体古生物学、大地构造学,主要关注造山带中混杂带的构造解析

    承担科研项目情况:

  • [1] 中国科学院“西部之光”项目,增生杂岩同造山-后造山全周期变形历史研究:以新疆西准噶尔地区为例,50万元,2025-2027,主持;

    [2] 中国科学院新疆生态与地理研究所自主部署项目,造山过程对增生杂岩的构造改造研究—以新疆扎伊尔增生杂岩为例,100万元,2024-2027,主持;

    [3] 国家自然科学基金委面上项目,敦煌造山带构造混杂带变质-变形过程及地质意义,53万元,2024-2027,主持;

    [4] 国家自然科学基金委青年项目,新疆西准噶尔北缘珠万托别增生杂岩带生长时序研究及其意义,27万元,2020-2022,主持;

    [5] 中国科学院大学优秀青年教师科研能力提升项目,中亚造山带西段海山俯冲事件的沉积记录研究,15万元,2021-2022,主持;

    [6] 中国科学院大学优秀青年教师科研能力提升项目,新疆别斯托别泥质片麻岩变质演化研究,15万元,2019-2020,主持;

    [7] 中国博士后科学基金会面上项目,中亚造山带西准噶尔北缘额敏蛇绿岩形成-就位时限研究,8万元,2018-2019,主持;

    代表论著:

  • 学术专著:

    侯泉林等著,2021,高等构造地质学(第四卷:知识综合与运用),科学出版社,北京,负责撰写第四章4.4节、第五章4.4节。

    学术论文:

    Ø 一作、通讯作者论文

    [1] Chen,Y. C.*,Liu,J. H.,Zhou,R. J.,Xiao,W. J.,Zhang,J. E.,Zhang,Z. Y.,Zhang,Q. W. L.,Li,Z. M. G.,and Wu,C. M.,2023 Constraint on the temperature of A-type magma from contact metamorphic aureole,Biesituobie batholith,West Junggar in NW China,Central Asian Orogenic Belt: GSA Bulletin,v.135,p. 1265-1279,https://doi.org/10.1130/b36541.1.

    [2] Chen,Y. C.*,Liu,J. H.,Zhou,R. J.,Xiao,W. J.,Zhang,J. E., Zhang, Z. Y., Zhang, Q. W. L., Li, Z. M. G., and Wu, C. M., 2023, Extensional magmatism caused by strain partitioning: insights from the mafic dikes hosted in Biesituobie batholith in West Junggar, CAOB: International Journal of Earth Sciences, v. 112, p. 33-49, https://doi.org/10.1007/s00531-022-02234-w.

    [3] Chen, Y. C.*, Zhang, J. E., Xiao, W. J., Zhou, R. J., Song, S. H., Zhang, Z. Y., Ao, S. J., Sang, M., Zhang, Q. W. L., Li, R., Li, Z. M. G., Liu, Y., Zhang, H. C. G., Liu, J. H., and Wu, C. M., 2021, Late Silurian to early Devonian development of the Chingiz accretion arc, West Junggar: insights into accretion arc evolution in the Central Asia Orogenic Belt: International Geology Review, v. 63, p. 2083-2103, https://doi.org/10.1080/00206814.2020.1824128.

    [4] Chen, Y. C., Xiao, W. J.*, Windley, B. F., Zhang, J. E., Zhou, K. F., and Sang, M., 2017, Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in West Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB: International Geology Review, v. 59, p. 1097-1115, https://doi.org/10.1080/00206814.2016.1185652.

    [5] Chen, Y. C., Xiao, W. J.*, Windley, B. F., Zhang, J. E., Sang, M., Li, R., Song, S. H., and Zhou, K. F., 2017, Late Devonian-early Permian subduction-accretion of the Zharma-Saur oceanic arc, West Junggar (NW China): Insights from field geology, geochemistry and geochronology: Journal of Asian Earth Sciences, v. 145, p. 424-445, https://doi.org/10.1016/j.jseaes.2017.06.010.

    [6] Zhang, Q. W. L., Chen, Y. C.*, Shi, M. Y., Li, Z. M. G., Liu, J. H., and Wu, C. M., 2022, Permian-Triassic magmatic and thermal events in the Dunhuang orogenic belt: implications for subduction records of the Paleo-Asian Ocean: International Geology Review, v. 64, p. 2306-2329, https://doi.org/10.1080/00206814.2021.1980742.

    [7] Zhang, Q. W. L., Chen, Y. C.*, Li, Z. M. G., Liu, J. H., Zhang, Q., and Wu, C. M., 2022, Identification of continental fragments in orogen: an example from   Dunhuang Orogenic Belt, NW China: Science Bulletin, https://doi.org/10.1016/j.scib.2022.05.005.

    [8] Li, Z. M. G., Chen, Y. C.*, Zhang, Q. W. L., Liu, J. H., and Wu, C. M., 2022, P-T conditions and timing of metamorphism of the Yuanmou area, southern Neoproterozoic Kang-Dian Orogenic Belt, southwest China: Precambrian Research, v. 374, p. 106642, https://doi.org/10.1016/j.precamres.2022.106642.

    [9] Liu, J. H., Chen, Y. C.*, Li, Z. M. G., Zhang, Q. W. L., Lan, T. G., Zhang, Q., and Wu, C. M., 2021, Temperature and timing of ductile deformation of the Longquanguan shear zone, Trans-North China Orogen: Precambrian Research, v. 359, p. 106217, https://doi.org/10.1016/j.precamres.2021.106217.

    [10] Li, Z. M. G., Chen, Y. C.*, Zhang, Q. W. L., Liu, J. H., and Wu, C. M., 2021, U-Pb dating of metamorphic monazite of the Neoproterozoic Kang-Dian Orogenic Belt, southwestern China: Precambrian Research, v. 361, p. 106262, https://doi.org/10.1016/j.precamres.2021.106262.

    [11] 陈艺超*, 张继恩, 侯泉林, 闫全人, 和肖文交, 2021, 增生弧基本特征 与地质意义: 地质科学, 卷56, 页615-634, https://doi.org/10.12017/dzkx.2021.031.

    [12] 陈艺超*, 张继恩, 田忠华, 闫全人, 侯泉林,和肖文交, 2021,造山带中缝合面结构特征与构造意义: 岩石学报, 卷37, 页2324-2338, https://doi.org/10.18654/1000-0569/2021.08.05.

    Ø 合作论文

    [13] Zhang, J. E., Chen, Y. C., Xiao, W. J., Wakabayashi, J., Gan, J. M., Tan, Y. Y., and Zhao, Y. L., 2024, Paleo-Suture Zone Disrupted by Thrusting: Example From East Junggar (NW China), Southern Altaids: Tectonics, v. 43, p. e2024TC008659, https://doi.org/ 10.1029/2024TC008659

    [14] Li, Z. M. G., Gaidies, F., Chen, Y. C., Zhao, Y. L., and Wu, C. M., 2024, Petrogenesis of sector-zoned garnet in graphitic metapelite from the Danba dome, eastern Tibetan Plateau (SW China): Contributions to Mineralogy and Petrolog, v. 179, no. 6, https://doi.org/10.1007/s00410-024-02139-8.

    [15] Li, Z. M. G., Chen, Y. C., Gaidies, F., Zhao, Y. L., and Wu, C. M., 2024, Identical metamorphic record in distinct petrochemical systems: Case study of microscopically interlayered garnet amphibolite and metapelite from the Danba dome, SW China: Lithos, v. 468, p. 107488, https://doi.org/10.1016/j.lithos.2023.107488.

    [16] Li, Z. M. G., Chen, Y. C., Zhang, H. C. G., and Wu, C. M., 2024, Common metamorphic P-T-t history of metabasite and metapelite in the Danba Barrovian sequence (SW China): Implications for the Mesozoic tectono-thermal evolution of the eastern Tibetan Plateau: GSA Bulletin, in press, https://doi.org/10.1130/b37575.1.

    [17] Xiao, Y., Rembe, J., Čopjaková, R., Aitchison, J. C., Chen, Y. C., and Zhou, R. J., 2024, Sedimentary record of Variscan unroofing of the Bohemian Massif: Gondwana Research, v. 128, p. 141-160, https://doi.org/10.1016/j.gr.2023.11.003.

    [18] Li, Z. M. G., Chen, Y. C., and Wu, C. M., 2023, Discrepant age records of Permian thermal overprint in metapelite in the Neoproterozoic Kang-Dian Orogenic Belt (SW China): Journal of Asian Earth Sciences, v. 254, p. 105737, https://doi.org/ 10.1016/j.jseaes.2023.105737

    [19] Zhang, J. E., Chen, Y. C., Xiao, W. J., Wakabayashi, J., Song, S. H., Luo, J., and Zhao, Y. L., 2023, Architecture of ophiolitic mélanges in the Junggar region, NW China: Geosystems and Geoenvironment, v. 2, no. 3, https://doi.org/10.1016/j.geogeo.2022.100175.

    [20] Zhang, Q. W. L., Li, Z. M. G., Shi, M. Y., Chen, Y. C., Liu, J. H., and Wu, C. M., 2021, 40Ar/39Ar dating of hornblende and U-Pb dating of zircon in the Aketashitage orogen, NW China: Constraints on exhumation and cooling in the Paleoproterozoic: Precambrian Research, v. 352, p. 106018, https://doi.org/10.1016/j.precamres.2020.106018.

    [21] Zhang, J. E., Chen, Y. C., Xiao, W. J., Wakabayashi, J., Windley, B. F., and Yin, J. Y., 2021, Sub-parallel ridge-trench interaction and an alternative model for the Silurian-Devonian archipelago in Western Junggar and North-Central Tianshan in NW China: Earth-Science Reviews, v. 217, p. 103648, https://doi.org/10.1016/j.earscirev.2021.103648.

    [22] Zhang, H. C. G., Liu, J. H., Wang, J., Chen, Y. C., Peng, T., and Wu, C. M., 2021, Paleoproterozoic metamorphism of metaultramafic rocks in the Miyun area, northeastern North China Craton: Precambrian Research, v. 354, p. 106048, https://doi.org/10.1016/j.precamres.2020.106048.

    [23] Liu, Y., Xiao, W. J., Windley, B. F., Zhou, K. F., Li, R. S., Zhan, M. G., Sang, M., Yang, H., Jia, X. L., Chen, Y. C., Ji, W. H., and Ao, S. J., 2021, Three stages of arc migration in the Carboniferous-Triassic in northern Qiangtang, central Tibet, China: Ridge subduction and asynchronous slab rollback of the Jinsha Paleotethys: GSA Bulletin, https://doi.org/10.1130/b35906.1.

    [24] Liu, J. H., Li, Z. M. G., Zhang, Q. W. L., Zhang, H. C. G., Chen, Y. C., and Wu, C. M., 2021, New 40Ar/39Ar geochronology data of the Fuping and Wutai Complexes: Further constraints on the thermal evolution of the Trans-North China Orogen: Precambrian Research, v. 354, p. 106046, https://doi.org/10.1016/j.precamres.2020.106046.

    [25] Abuduxun, N., Windley, B. F., Xiao, W. J., Zhang, J. E., Chen, Y. C., Huang, P., Gan, J. M., and Sang, M., 2022, Carboniferous tectonic incorporation of a Devonian seamount and oceanic crust into the South Tianshan accretionary orogen in the southern Altaids: International Journal of Earth Sciences, v. 111, p. 2535-2553, https://doi.org/10.1007/s00531-021-02109-6.

    [26] Abuduxun, N., Xiao, W. J., Windley, B. F., Chen, Y. C., Huang, P., Sang, M., Li, L., and Liu, X. J., 2021, Terminal suturing between the Tarim Craton and the Yili-Central Tianshan arc: Insights from mélange-ocean plate stratigraphy, detrital zircon ages and provenance of the South Tianshan accretionary complex: Tectonics, v. 40, p. e2021TC006705, https://doi.org/10.1029/2021TC006705.

    [27] Zhang, Q. W. L., Wang, H. Y. C., Liu, J. H., Shi, M. Y., Chen, Y. C., Li, Z. M. G., and Wu, C. M., 2020, Diverse subduction and exhumation of tectono-metamorphic slices in the Kalatashitage area, western Paleozoic Dunhuang Orogenic Belt, northwestern China: Lithos, v. 360-361, p. 105434, https://doi.org/10.1016/j.lithos.2020.105434.

    [28] Zhang, Q. W. L., Liu, J. H., Li, Z. M. G., Shi, M. Y., Chen, Y. C., and Wu, C. M., 2020, Juxtaposition of diverse, subduction-related tectonic blocks with contrasting metamorphic features and ages in the Paleoproterozoic Aketashitage orogen, NW China: Implications for Precambrian orogeny: GSA Bulletin, https://doi.org/10.1130/b35766.1.

    [29] Zhang, H. C. G., Peng, T., Liu, J. H., Wang, J., Chen, Y. C., Zhang, Q. W. L., and Wu, C. M., 2020, New geochronological evidences of late Neoarchean and late Paleoproterozoic tectono-metamorphic events in the Miyun area, North China Craton: Precambrian Research, v. 345, p. 105774, https://doi.org/10.1016/j.precamres.2020.105774.

    [30] Song, S. H., Xiao, W. J., Windley, B. F., Collins, A. S., Chen, Y. C., Zhang, J. E., Schulmann, K., Han, C. M., Wan, B., Ao, S. J., Zhang, Z. Y., Song, D. F., and Li, R., 2020, Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids: Tectonics, v. 39, p. 1-24, https://doi.org/10.1029/2019tc005781.

    [31] Song, S. H., Xiao, W. J., Chen, Y. C., Windley, B. F., Zhang, J. E., and Chen, Z. Y., 2020, Growth of an accretionary complex in the southern Chinese Altai: Insights from the Palaeozoic Kekesentao ophiolitic mélange and surrounding turbidites: Geological Journal, v. 56,p. 265-283, https://doi.org/10.1002/gj.3955.

    [32] Liu, J. H., Zhang, Q. W. L., Li, Z. M. G., Zhang, H. C. G., Chen, Y. C., and Wu, C. M., 2020, Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai Complex: Implications for Paleoproterozoic tectonic evolution of the Trans-North China Orogen: Precambrian Research, v. 350, p. 105928, https://doi.org/10.1016/j.precamres.2020.105928.

    [33] Borbugulov, E., Chen, Y. C., Xiao, W. J., Windley, B., Schulmann, K., Zhang, J. E., Zhang, Z. Y., Song, S. H., Li, R., and Sang, M., 2020, Late Carboniferous southward migration of Tarbagatay subduction-accretion complex by slab retreat and break-off in West Junggar (NW China): Geological Journal, v. 55, p. 11-30, https://doi.org/10.1002/gj.3408.

    [34] Bai, X. Y., Chen, Y. C., Song, D. F., Xiao, W. J., Windley, B. F., Ao, S. J., Li, L., and Xiang, D. F., 2020, A new Carboniferous–Permian intra-oceanic subduction system in the North Tianshan (NW China): Implications for multiple accretionary tectonics of the southern Altaids: Geological Journal, v. 55,p. 2232-2253, https://doi.org/10.1002/gj.3787.

    [35] Zhang, Q. W. L., Liu, J. H., Wang, H. Y. C., Shi, M. Y., Chen, Y. C., Li, Z. M. G., Zhang, H. C. G., Pham, V. T., and Wu, C. M., 2019, Amphibolite facies metamorphism and geochronology of the Paleoproterozoic Aketashitage Orogenic Belt, northwestern China: Precambrian Research, v. 328, p. 146-160, https://doi.org/10.1016/j.precamres.2019.04.019.

    [36] Zhang, H. C. G., Liu, J. H., Chen, Y. C., Zhang, Q. W. L., Tho Pham, V., Peng, T., Li, Z. M. G., and Wu, C. M., 2019, Neoarchean metamorphic evolution and geochronology of the Miyun metamorphic complex, North China Craton: Precambrian Research, v. 320, p. 78-92, https://doi.org/10.1016/j.precamres.2018.10.015.

    [37] Liu, Y., Xiao, W. J., Windley, B. F., Schulmann, K., Li, R. S., Ji, W. H., Zhou, K. F., Sang, M., Chen, Y. C., Jia, X. L., and Li, L., 2019, Late Silurian to Late Triassic seamount/oceanic plateau series accretion in Jinshajiang subduction mélange, Central Tibet, SW China: Geological Journal, v. 54, p. 961-977, https://doi.org/10.1002/gj.3432.

    [38] Liu, Y., Xiao, W. J., Windley, B. F., Li, R. S., Ji, W. H., Zhou, K. F., Sang, M., Chen, Y. C., Jia, X. L., Li, L., and Zhang, H. D., 2019, Late Triassic ridge subduction of   Paleotethys: Insights from high-Mg granitoids in the Songpan-Ganzi area of northern Tibet: Lithos, v. 334-335, p. 254-272, https://doi.org/10.1016/j.lithos.2019.03.012.

    [39] Zhang, J. E., Xiao, W. J., Luo, J., Chen, Y. C., Windley, B. F., Song, D. F., Han, C. M., and Safonova, I., 2018, Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids: Journal of Asian Earth Sciences, v. 159, p. 259-278, https://doi.org/10.1016/j.jseaes.2017.03.023.

    [40] Luo, J., Xiao, W. J., Wakabayashi, J., Han, C. M., Zhang, J. E., Wan, B., Ao, S. J., Zhang, Z. Y., Tian, Z. H., Song, D. F., and Chen, Y. C., 2017, The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids: Gondwana Research, v. 24, p. 17-40, https://doi.org/http://dx.doi.org/10.1016/j.gr.2015.04.004

    [41] 霍宁, 郭谦谦, 陈艺超, 和宋东方,2022,北山中部古硐井群物源区性质与构造意义: 岩石学报, 卷38, 页1253-1279, https://doi.org/10.18654/1000-0569/2022.04.17.

    [42] 张继恩, 陈艺超, 肖文交, 和闫臻, 2021,蛇绿岩与蛇绿混杂带结构: 地质科学, 卷56, 页560-595, https://doi.org/10.12017/dzkx.2021.029.

    [43] 侯泉林, 郭谦谦, 陈艺超, 程南南, 石梦岩, 和李继亮, 2021, 山脉与造山带及有关问题讨论: 岩石学报, 卷37, 页2287-2302, https://doi.org/10.18654/1000-0569/2021.08.02.

    Hou, Q. L., Guo, Q. Q., Chen,Y. C.,Chen,N. N.,Shi, M. Y., and Li, J. L., 2021,

    [44] 张继恩, 陈艺超, 肖文交, 陈振宇, 和宋帅华, 2018, 洋底凸起地质体及其对造山带中蛇绿岩组分的贡献: 岩石学报, 卷34, 页1977-1990, https://doi.org/1000-0569/2018/034(7)-1977-90.

    [45] 张慧, 王娟, 彭涛, 范文寿,陈艺超, 侯泉林,和吴春明,2018, 北京云 蒙山大水峪韧性剪切带糜棱岩的变形温度: 岩石学报, 卷34, 页1801-1812, https://doi.org/1000-0569-2018-34(06)-1801-12.

    [46] 王珊珊, 周可法, 周曙光, 和陈艺超,2018, 风化面、荒漠漆及地衣在岩矿表面对高光谱遥感的影响: 地质科学, v. 53, p. 739-748, https://doi.org/10.12017/dzkx.2018.041.

    [47] 王珊珊, 周可法, 王金林, 张楠楠, 和陈艺超,2015,新疆谢米斯台地区岩矿光谱特征提取及光谱分析: 地质科学,卷50, 页1261-1270, https://doi.org/10.3969/j.issn.0563-5020.2015.04.016.

    [48] 陈博, 朱永峰, 安芳, 邱添, 和陈艺超, 2011, 新疆克拉玛依地区百口泉发现尖晶石橄榄岩: 地质通报(中文核心), 卷30, 页1017-1026, https://doi.org/10.3969/j.issn.1671-2552.2011.07.003.

    [49] 脇田浩二 (陈艺超 译, 张继恩 和王军鹏 校对), 2021, OPS混杂岩概念及其填图方法:以日本Mino和Chichibu侏罗纪增生杂岩为例 (中英文双语): 地质科学, 卷56, 页395-429, https://doi.org/10.12017/dzkx.2021.022.

    [50] Wakabayashi, J. (田忠华 译,张继恩 和陈艺超 校对), 2021,弧前构造带结构特征:来自加利福尼亚弗朗西斯科杂岩、海岸山脉蛇绿岩和大峡谷群的证据 (中英文双语): 地质科学, 卷56, 页357-394, https://doi.org/10.12017/dzkx.2021.021.

    专利申请:

    获奖及荣誉: