施海洋,江苏南通海门人,博士(后)、副研究员,入选国家人才计划(青年类)。在Science Bulletin、JoH、HESS、GCB、MEE、BG、IEEE TGRS等水文、生态、遥感领域知名的国际期刊发表SCI论文二十余篇。曾担任JAMES、HESS、JoH等知名国际期刊的审稿人。
教育经历:
2016年7月,合肥工业大学,学士学位,专业:地理信息科学。
2022年5月,比利时根特大学和中国科学院大学,双博士学位,专业:地理学(导师:Philippe De Maeyer院士、罗格平研究员、Tim Van de Voorde教授、Piet Termonia教授)。
工作经历:
2022年12月至2023年10月,河海大学地球科学与工程学院/地理与遥感学院,讲师;
2023年11月至2024年12月,美国伊利诺伊大学厄巴纳香槟分校土木与环境工程系水文系统实验室,博士后研究员(导师:蔡喜明教授);
2024年12月至今,中国科学院新疆生态与地理研究所,副研究员。
干旱区生态水文与水资源管理、地理与遥感大数据挖掘
主持国家级人才项目(青年),参与中国科学院先导A项目、国自然面上基金、地区联合基金、科技部重点研发子课题等。
1. H. Shi, G. Luo,H. Zheng, C. Chen, J. Bai, T. Liu, F. U. Ochege, P. De Maeyer, Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River basin. Journal of Hydrology 581, 124387 (2020).
2. H. Shi, G. Luo, H. Zheng, C. Chen, O. Hellwich, J. Bai, T. Liu, S. Liu, J. Xue, P. Cai, H. He, F. U. Ochege, T. Van de Voorde, P. de Maeyer, A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins. Hydrol Earth Syst Sci 25, 901–925 (2021).
3. H. Shi,Q. Pan, G. Luo, O. Hellwich, C. Chen, T. V. de Voorde, A. Kurban, P. De Maeyer, S. Wu, Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sensing 13, 4709 (2021).
4. H. Shi, O. Hellwich, G. Luo, C. Chen,H. He, F. U. Ochege, T. Van de Voorde, A. Kurban, P. de Maeyer, A Global Meta-Analysis of Soil Salinity Prediction Integrating Satellite Remote Sensing, Soil Sampling, and Machine Learning. IEEE Trans Geosci Remote Sens 60, 1–15 (2022).
5. H. Shi,G. Luo, O. Hellwich, M. Xie, C. Zhang, Y. Zhang, Y. Wang, X. Yuan, X. Ma, W. Zhang, A. Kurban, P. De Maeyer, T. Van de Voorde, Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation. Biogeosciences 19, 3739–3756 (2022).
6. H. Shi, G. Luo, O. Hellwich, M. Xie, C. Zhang, Y. Zhang, Y. Wang, X. Yuan, X. Ma, W. Zhang, A. Kurban, P. De Maeyer, T. Van de Voorde, Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis. Hydrology and Earth System Sciences 26, 4603–4618 (2022).
7. H. Shi, G. Luo, O. Hellwich, A. Kurban, P. De Maeyer, T. Van de Voorde, Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models. Biogeosciences 20, 2727–2741 (2023).
8. H. Shi, G. Luo, O. Hellwich, X. He, A. Kurban, P. De Maeyer, T. Van de Voorde, Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations. Hydrology and Earth System Sciences 27, 4551–4562 (2023).
9. H. Shi, G. Luo, O. Hellwich, X. He, M. Xie, W. Zhang, F. U. Ochege, Q. Ling, Y. Zhang, R. Gao, A. Kurban, P. De Maeyer, T. Van de Voorde, Comparing the use of all data or specific subsets for training machine learning models in hydrology: A case study of evapotranspiration prediction. Journal of Hydrology 627, 130399 (2023).
10. H. Shi, G. Luo, E. H. Sutanudjaja, O. Hellwich, X. Chen, J. Ding, S. Wu, X. He, C. Chen, F. U. Ochege, Y. Wang, Q. Ling, A. Kurban, P. De Maeyer, T. Van de Voorde, Recent impacts of water management on dryland’s salinization and degradation neutralization. Science Bulletin 68, 3240–3251 (2023).
11. H. Shi, Y. Zhang, G. Luo, O. Hellwich, W. Zhang, M. Xie, R. Gao, A. Kurban, P. De Maeyer, T. Van de Voorde, Machine learning-based investigation of forest evapotranspiration, net ecosystem productivity, water use efficiency and their climate controls at meteorological station level. Journal of Hydrology 641, 131811 (2024).
12. H. Shi, Potential of constructing all-encompassing soil–plant-atmosphere-continuum stations and datasets from meteorological, flux, soil moisture station networks and plant-relevant observations. Hydrological Processes 38, e15284 (2024).